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Abstract. Automated verification tools based on SMT solvers have
made significant progress in verifying complex software systems. However,
these tools face a fundamental tension between automation and perfor-
mance when dealing with quantifier instantiation—the primary source of
incompleteness and verification slowdown in SMT-based verifiers. Tools
choose between aggressive quantifier instantiation that provides more
automation but longer verification times, or conservative instantiation
that responds quickly but may require more manual proof hints.
We present a mechanism that enables fine-grained control over the avail-
ability of quantified facts in verification contexts, allowing developers to
selectively tune the level of automation. Our approach lets library authors
provide different pre-defined automation levels while giving end-users the
ability to further customize quantifier availability at the module, function,
or proof context level.
We implement our techniques in Verus, a Rust-based verification tool,
and evaluate them on multiple openly available codebases. Our empirical
analysis demonstrates the automation-performance tradeoff and that
selective quantifier management is needed for developers to select the
appropriate level of automation in different contexts.
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1 Introduction

Formal verification of programs can guarantee their correctness with respect to
a specification (and under certain assumptions of their operating environment).
Verification tools based on automated theorem provers (such as SMT-solvers)
have made significant progress in efficiency and scalability to larger projects [9,11,
13,22,32]. Fully automated proofs are only possible when writing specification and
code so that it falls within a decidable fragment of first-order logic [3,20,21,24,26],
but this imposes a significant limitation in expressivity and often prevents the
developer from describing the specification and program in the most natural
way [11]. General-purpose verifiers thus allow expressing programs and proofs in
an undecidable logic (often first-order logic with uninterpreted functions, integer
arithmetic, and unrestricted quantification).
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The verification community’s experience is that quantifier instantiation is
the primary source of incompleteness and verification performance penalty in
SMT-based verifiers [9, 12, 14, 17, 19, 23]. These tools express everything from
core axioms to developer-stated properties using quantifiers, and then rely on
the SMT-solver syntactic matching (e-matching) heuristic [18] to automatically
instantiate quantified expressions with symbolic values from the proof context.
This approach has two consequences: (i) if the syntactic “trigger” that results
in instantiation is not present in the proof context, the user has to provide a
hint to instantiate the quantifier as needed and (ii) the verification time can be
proportional (often exponentially) to the number of quantifiers in the automated
prover’s scope and to how easily they are instantiated (based on their syntactic
“triggers”). If quantifiers are not sufficiently instantiated, the verification tool’s
automation is more incomplete (it will fail verification, which can be fixed by a
manual user hint). On the other hand, quantifiers with easily matched syntactic
triggers may enable the prover to automatically find proofs in more cases, but
result in a large potential search space, causing long verification runtimes before
the tool reports success or failure. Semi-automated verification tools generally fall
somewhere on this “automation spectrum” (Figure 1). For example, Dafny [15]
employs a trigger selection algorithm that minimizes the need for user annotation
and hints: this helps new Dafny users write proofs without immediately having
to learn about the underlying mechanism [14]. On the contrary, Verus [11, 12]
has conservative defaults optimized for short response times, at the potential
cost of less out-of-the-box automation due to more incomplete instantiation.

more solver search more human hints 

Dafny
(default)

Verus
(default)

tunable increased automation 

Fig. 1: The spectrum of quantifier-based automation.

In this work, we explore several ways to allow the user to tune the amount
of automation (and its resulting cost) provided by quantifier instantiation in
automated verification tools. We implement and evaluate our techniques in the
Verus Rust-based verification tool and language [11,12].

Our technical contribution is a broadcast mechanism to selectively include
axioms and lemmas in the proof environment as quantified facts, allowing both
coarse-grained and fine-grained control over which quantifiers are available to
the SMT solver in different proof contexts. Quantified facts can be imported
in bulk, or selectively, at the module, function, or isolated proof context level.
The broadcast mechanism enables library authors to provide various default
“automation levels” and end-users to select among these, or further tune the proof
context. The user can also query the tool to determine which quantified facts
were likely used in a proof, allowing fine-tuning once a proof is discovered.
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We provide an empirical analysis of the broadcast mechanism’s impact
on verification time and proof burden across multiple openly available Verus
codebases. Our evaluation clarifies the tuning tradeoff that allows shorter proofs
at the cost of some verification performance. Additionally, we investigate trigger
selection strategies and their effects on the automation-performance tradeoff.

2 Background

2.1 Verus

Verus [11,12] is an SMT-based semi-automated tool to verify the correctness of
code written in Rust. Verus is heavily inspired by Dafny [15] and optimizes for
short developer iteration time thanks to short response times [11] for both suc-
cessful and unsuccessful proofs. The following Verus example briefly demonstrates
Verus syntax and how it integrates a verification language in Rust:

1 spec fn divides(n: int, k: nat) -> bool { n % (k as int) == 0 }
2
3 spec fn is_prime(n: nat) -> bool {
4 forall|k: nat| 2 <= k < n ==> !divides(n as int, k)
5 }
6
7 spec fn is_even(i: int) -> bool { divides(i, 2) }
8
9 proof fn even_gt_2_isnt_prime(i: nat)

10 requires i > 2 && is_even(i as int)
11 ensures !is_prime(i) { }
12
13 fn is_prime_impl(n: u64) -> (result: bool)
14 requires n >= 2,
15 ensures result == is_prime(n as nat)
16 { /* ... implementation and proof ... */ }

The spec functions divides, is_prime, and is_even contain pure logical
ghost expressions (including quantifiers), used to express function specifications
or auxiliary conditions. even_gt_2_isnt_prime is a ghost proof function, which
expresses a callable lemma, and - in this case - can be proven automatically by
the solver. is_prime_impl is an executable function that is proven to compute
whether the input is prime according to the is_prime definition (we omit the
implementation and proof for brevity). Ghost code includes spec and proof
functions, executable functions’ pre- and post-conditions, and inline assertions,
such as the following, which appears as part of the proof of is_prime_impl:

1 assert(divides(n as int, i as nat));

2.2 Quantifier Triggers

As discussed in Section 1, semi-automated verification tools heavily rely on
quantifier instantiation to automatically discharge proof obligations. Syntactic
matching (e-matching) via “triggers” [7] is a commonly used heuristic for automatic
quantifier instantiation, and – while the underlying solver is often capable of
automatically selecting quantifier triggers (sometimes known as “patterns”) –
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languages like Dafny and Verus perform trigger selection at the surface language
level and allow manual selection and manual overrides through user-provided
annotations. Performing trigger selection in the verification tool can help avoid
expensive or vacuous triggers [14].

In Verus, like in similar tools, only function calls, field accesses, or arithmetic
operators where one of the arguments is one of the quantified variables are
allowed as trigger subexpressions. A trigger is composed of potentially multiple
subexpressions and needs to mention all quantified variables at least once.

The following proof function has a precondition that all elements of a sequence
are even numbers, and we want to prove that a specific entry is even.

1 spec fn is_even(i: int) -> bool { i % 2 == 0 }
2
3 proof fn seq_trigger_example(s: Seq<int>)
4 requires
5 5 <= s.len(),
6 forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s.index(i)),
7 {
8 assert(s.index(3) % 2 == 0);
9 }

The valid triggers for the forall on line 6 are is_even(s.index(i)) and
s.index(i), and the user has manually chosen is_even(s.index(i)) with
the #[trigger] annotation. Because is_even(s.index(3)) does not appear
anywhere in the context, the solver will not instantiate the quantifier with i == 3
and thus the assert on line 8 will fail. Changing the trigger to s.index(i) will
enable matching with s.index(3) and result in a successful proof.

2.3 Implicit Context

SMT-based semi-automated tools like Dafny and Verus include a default set
of quantified facts provided as part of the “prelude” of the SMT problem that
encodes the program verification condition. This default set defines, among others,
the semantics of built-in concepts like sequences (Seq in Dafny). For example,
proving the following

1 proof fn seq_axiom_usage(s1: Seq<nat>, s2: Seq<nat>)
2 requires s1.len() > 10 && s2.len() > 20
3 ensures s1.add(s2).len() > 30 { }

relies on this built-in Verus axiom:
1 • (#[trigger] s1.add(s2).len()) == s1.len() + s2.len()

In Dafny, this context is fixed and defined as part of verification condition
generation (through Boogie [2]). In Verus, a default context is defined in a pure-
SMT prelude and a collection of lemmas in the standard library explicitly marked
to become contextual quantified facts. More quantified facts in the proof context
improve the level of automation available to the users, but increase the proof
search space available to the solver, potentially resulting in longer response times.
In this work, we address the one-size-fits-all approach to contextual quantified
facts by allowing users to construct and selectively import them.
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3 Quantified Facts à la Carte

We introduce a mechanism in Verus to selectively publish quantified facts from
proof functions (lemmas) with a user-provided marker (broadcast) and import
them as additional context for a module or function (via the new keyword
broadcast use).

We showcase the usage of broadcast in the following code examples.
This lemma fails to verify automatically in Verus:

1 pub proof fn push_contains(a: Seq<int>) {
2 let b = a.push(3);
3 assert(b.contains(3));
4 }

due to Verus’ default context being insufficient to prove the fact that a
sequence contains every element it contains before after pushing:

1 pub broadcast proof fn lemma_seq_contains_after_push<A>(s: Seq<A>, v: A, x: A)
2 ensures (#[trigger] s.push(v).contains(x)) <==> v == x || s.contains(x),
3 { /* ... manual proof ... */ }

However, once proven and marked broadcast, this quantified fact can be
imported as the following universally quantified statement:

1 • forall|s: Seq<_>, v: A, x: A|
2 (#[trigger] s.push(v).contains(x)) <==> v == x || s.contains(x)

As broadcast proofs share the same ability as moving the input parameters
to a universally quantified variable in the ensures clause, they must adhere to
trigger rules as if they are universally quantified.

Now, this broadcasted proof can be imported in context with the directive:
1 broadcast use {lemma_seq_contains_after_push};

For example, the initial lemma verifies automatically by importing:
1 pub proof fn push_contains(a: Seq<int>) {
2 broadcast use {lemma_seq_contains_after_push};
3 let b = a.push(3);
4 assert(b.contains(3));
5 }

Broadcastable quantified facts, i.e. proof functions marked with broadcast,
can be defined in the Verus standard library, in third-party libraries, or in end-
user code, and can be imported directly, or through broadcast groups, which
name and collect related broadcastable facts together so they can be imported
in context in bulk. As an example, lemma_seq_contains_after_push is now in
fact a broadcastable quantified fact in the Verus standard library, and it is part
of the group_seq_properties broadcast group defined, again, by the standard
library:

1 pub broadcast group group_seq_properties {
2 lemma_seq_contains,
3 // ...
4 lemma_seq_contains_after_push,
5 // ...
6 }

This enables the user to import a larger set of quantified facts in context in
bulk, as follows:



6 A. Y. Bai, et al.

1 pub proof fn push_contains(a: Seq<int>) {
2 broadcast use {vstd::seq_lib::group_seq_properties}; // imports all the quantified facts

from the group
3 let b = a.push(3);
4 assert(b.contains(3));
5 }

Thanks to this mechanism Verus can provide a default set of quantified facts
in context while allowing the end-user to tune the level of quantifier-instantiation-
induced automation in each proof context. Library authors can also leverage the
mechanism to provide (sets of) contextual quantified facts for their users’ benefit.

3.1 Restricting the Set of Quantified Facts in the Context

Additional quantified facts in context improve automation at the cost of some
verification performance, as we will see in our case studies in Section 5. We
extended Verus to interpret the solver’s “unsat-core” output, which contains
the facts that were used in a successful proof, to display to the user the set of
imported quantified facts that are likely necessary for the proof. When running
Verus with the appropriate flag on the last example of the previous section (which
relies on the bulk import of the group_seq_properties quantified facts), we get
the following output:
checking this function used these broadcasted lemmas and broadcast groups:

- (group) vstd:: seq_lib :: group_seq_properties ,
- vstd:: seq_lib :: lemma_seq_contains_after_push

This indicates that lemma_seq_contains_after_push was the only quanti-
fied fact relevant for the proof, and enables the end-user to trim the context by
replacing the broadcast use for the entire group_seq_properties with just
lemma_seq_contains_after_push, which results in a successful proof but with
reduced context:

1 pub proof fn push_contains(a: Seq<int>) {
2 broadcast use {vstd::seq_lib::lemma_seq_contains_after_push};
3 let b = a.push(3);
4 assert(b.contains(3));
5 }

The combination of bulk import of quantified facts via broadcast use of
broadcast groups and the tooling to report those that are likely relevant to the
proof enables a workflow where the developer first imports a broad set of facts
in context, and when the proof is successful, trims the set of quantified facts to
those relevant to the proof, potentially recovering proof performance by reducing
the solver’s search space.

The ability to import quantified facts in broader or more limited proof
scopes also enables fine-grained control of where to increase automation. With
broadcast use, a Verus user can import quantified facts in any proof contexts,
or for an entire module. New proof contexts are introduced by

– proof functions (proof fn);
– assert (expression) by { /* ... proof ... */ };
– calculational proofs (“calc” in Dafny and Verus).
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In the previous example, the user can broadcast use group_seq_properties
at the module level, and then fine-tune the level of automation by tailoring the
set of imported quantified facts in more granular proof contexts to address
verification performance slowdowns [8].

4 Case studies

4.1 Modularizing Proof Libraries

The broadcast mechanisms enable constructing self-contained abstractions that
hide the internal details of type-specific proofs but expose relevant facts relating
values in the abstraction. As an example, we look at the abstraction over keys
used in IronKV, the Verus port [11] of the verified sharded key-value store from
Ironfleet [10].

For most of the system, the concrete type representing a key is irrelevant for
the proofs, which only rely on the fact that keys have certain properties. IronKV
defines a Rust “trait” (similar to a Haskell-style typeclass) that (i) expresses the
proof obligations for a type to be a valid key, and (ii) exposes the properties
relevant to the clients of the key abstraction through the broadcast mechanism.

1 pub trait Key {
2 ...
3 proof fn key_obligations()
4 ensures // ... conditions necessary for the type to be a valid key
5
6 broadcast proof fn trans_lt_lt(a:Self, b:Self, c:Self)
7 ensures a < b && b < c ==> a < c
8 { /* justified thanks to the ensures of ‘key_obligations‘ */ }
9

10 // ... additional properties ...
11 }
12
13 pub broadcast group group_key_cmp_properties {
14 Key::trans_lt_lt,
15 // ... additional ‘broadcast‘ proofs from the trait
16 }

Fig. 2: Excerpt from the definition of IronKV’s key trait: the example
has been simplified for ease of presentation but without hiding any
relevant details.

Figure 2 shows the definition of the Key trait. A type implementing the trait
must provide a proof for key_obligations, which ensures that the type has the
necessary properties to be used as a key. In return, the trait exposes a number of
broadcastable quantified facts (such as trans_lt_lt) which are grouped together
in the broadcast group group_key_cmp_properties. Code that operates on
keys need not know the details of the type used as keys, and can just rely on
the properties exposed through the group by importing the quantified facts in
context via the directive:
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1 broadcast use {group_key_cmp_properties};

4.2 Verus Standard Library

As discussed in Section 2.3, built-in abstract datatypes’ semantics are defined as
axioms or proofs in the default implicit context of quantified facts. The broadcast
mechanism offers greater flexibility in organizing the quantified facts for these
datatypes, such as sequences, maps, and sets.

Dafny fully defines these datatypes’ semantics as axioms in the Boogie “prelude”
used during verification condition generation: some can be derived from other
axioms with proofs, but they still appear as axioms in the prelude because Dafny
lacks a general mechanism to include in the context additional quantified facts
derived from proofs. In comparison, in Verus there are a much smaller number
of axioms (resulting in a smaller Trusted Computing Base) and additional facts
relating operations on the built-in datatypes are broadcast proof functions that
are grouped together with the axioms in a default broadcast group which is
automatically included in the proof context with the Verus’ standard library. As
a conservative choice to prioritize verification performance, this is a smaller set
than what’s included in Dafny’s prelude.

5 Exploring the Automation Tradeoff

We set out to study the effect of tuning the level of automation associated with
reasoning about built-in Verus collection datatypes: Seq, Map, Set, and Multiset.
We design experiments to answer the following questions:
RQ1: Does increasing the number of quantified facts in context result in more

automation, i.e. fewer manual user-provided hints (in the form of asserts)?
RQ2: Does increasing the number of quantified facts in context hinder verifica-

tion performance or the verification experience?
We grouped the broadcast proof functions corresponding to the quantified

facts included in Dafny’s prelude but excluded from Verus’ default context in four
broadcast groups, one per collection type: group_<type>_properties. The
following table lists the number of translated Dafny prelude lemmas:

Collection datatype Seq Map Set MultiSet Total
# of group_<type>_properties lemmas 25 2 10 12 49

We then used broadcast use to include these lemmas as quantified facts in
the context of a number of openly available Verus projects and measured the
impact on the number of manual hints necessary and on verification performance.
In the following, we refer to imported quantified facts for collection types as
ambient facts for brevity. For these experiments, we focus on the effects of
including these facts in all proof contexts, and do not try to fine-tune the scope
in which facts are made available.4

4 All experiments are available at: https://github.com/ahuoguo/tunable-automation

https://github.com/ahuoguo/tunable-automation
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5.1 Projects under Study

We considered the following projects as verification benchmarks:

– IronKV is a distributed key-value store which was described in Sec 4.1
– Splinter [1] is an ongoing work on a key-value store designed around a Bϵ

tree.
– Anvil [22] is a framework for building and formally verifying Kubernetes

controllers. It provides a TLA-style temporal logic to reason with eventually
stable reconciliation of controllers. We currently only focus on the anvil
framework rather than the verification of specific controllers.

– CapybaraKV [13] is a storage system targeting persistent memory devices

5.2 Minimization

For the purpose of this experiment, we need a measure of “automation”, for
which we use a proxy metric: the number of hints provided to the solver via
assert statements that are needed for the proof to succeed. Our projects under
study contain more asserts than strictly necessary: they are used during proof
development as a proof debugging strategy, and developers do not systematically
remove asserts that become unnecessary once the proof is complete. asserts
are also often intentionally retained as documentation of the proof structure. For
the number of asserts to be a viable proxy metric for the level of automation,
we need to determine the least number of such hints that still result in successful
verification. We can automate such minimization by removing asserts and re-
running verification, electing to keep only those that – when removed – result in a
failure. However, this has combinatorial complexity: for a project with n asserts,
there are, as a first approximation, 2n candidates for a “minimal” proof. 5 We
developed a Verus minimization tool that linearly scans through the proof code
and removes the proof code (in the form of assert and assert (...) by {...})
if its removal does not cause a failure (i.e. if it is redundant as a hint to the
solver). While obviously imperfect, we consider this an acceptable approximation
to make it feasible to use this metric. Despite this simplification, it is Verus’
performance that enables the use of this metric, for which we still need to re-run
verification after each assert is tentatively removed6. To our knowledge, this is
the first study of what fraction of asserts in a project are actually necessary
hints to the solver. In a sense, we introduce a form of program slicing in the
context of verification code [27].

To evaluate the impact of ambient facts on the level of automation, we run our
Verus minimization tool twice on each project: first on the unmodified project,
5 Consider a verification project with 100 asserts you want to minimize, and each run

is 1 second. Then you have 2100 possible candidates to consider, which takes about
4× 1022 years.

6 Additional tooling may enable only re-running verification for the verification condi-
tion affected by the assert, but there is “cross-talk" between VCs (also known as
“instability”) which complicates this potential approach
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and then again after importing the ambient facts. The number of asserts that
become redundant when the ambient facts have been imported is a proxy metric
for the resulting increase in automation (and thus, indirectly, proof effort).

It is important to note that counting the number of surviving asserts after
“minimization” is a very rough measure of automation and might not reflect true
developer experience. Developers use asserts to guide the solver, but also to
debug proofs (and to document and clarify their own understanding of the proof
strategy). Another limitation is our “minimizer” only targets assertions, namely,
assert(...), assert <forall> ... by {...} while it ignores calls to lemmas
(proof functions) which can also be made redundant by ambient facts7.

5.3 Effect on the Level of Automation

Table 1 contains the effect of ambient facts. One interesting observation is the
number of extra assertions the target verification projects have; more than half
of the assertions in these projects do not contribute to the SMT solver reaching
an UNSAT.

System Original # Minimized Minimized with
of asserts Ambient Facts

IronKV 646 268(-58.5%) 245(-23, -8.6%)
Splinter 2678 1158(-56.7%) 1130(-28, -2.4%)
Anvil 701 343(-51.1%) 336(-7, -2.0%)
CapybaraKV 941 449 (-52.3%) 415 (-34, -7.6%)

Table 1: Assertion counts for verification systems after minimization and importing
ambient facts

RQ1: Do more ambient facts about collection types bring more automation?
We see a reduction of the number of assertions for ambient facts, ranging

from 2%-9%. Some of the assertions are non-trivial proof blocks ranging from
5-10 lines and were automatically discharged solely due to the ambient facts of
collection types.

5.4 Impact on Verification Time

To answer RQ2, we first measure the ambient facts’ impact on verification time.
All experiments are done with 9 threads on a Dell PowerEdge M620 blade system
(Intel Xeon E5 v2) with 16 cores using Verus version 0.2025.07.03.3105aa2. The
results can be seen in Figure 3. The figure compares each function’s original
verification time to the verification time after having ambient facts and minimiza-
tion. We can see that ambient facts do slow down verification by some amount,
7 Deleting lemma calls requires semantic information, which is not available in our

syntax-level minimization tool
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with ∼ 2% of the functions taking 2x of their verification time, and the worst
slowdown in all projects ranges from 3x to 19x.

The experiment data showed that the ambient facts improve automation by
some amount, but may have noticeable runtime slowdown in one or two specific
functions. We argue that our new technique for broadcastable quantified facts
is a way to combat verification slowdowns on particular functions. Quantified
facts can be tuned down by importing them at a finer-grained level, rather than
providing the ambient facts everywhere, as we discussed in Section 3.1.
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98.20% of IronKV functions take at most
2x of their original verification time
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Anvil
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Fig. 3: Cumulative distribution of verification time ratio for each function, ratio
is between ambient facts (minimized) and original verification time. We have
removed two extreme cases of 10x verification slowdown, one in Splinter, where
the runtime bumped from 34ms to 669ms (19.6x), and one in Anvil, where the
runtime bumped from 3508ms to 43563ms (12.4x)

5.5 Impact on Verification Failure Time

Although Verus’s run time for successful verification tasks is important when we
are importing ambient facts, the time for reporting a verification failure is also
important to the verification engineer’s experience. As we may have dramatically
increased the search space by importing more ambient facts, this might cause
a similarly dramatic increase in the time Verus takes to report a verification
failure. Once the solver finds a proof, it stops, which does not happen if the
proof is incomplete or incorrect. Thus, it is also important to see if more ambient
facts impact user experience by slowing down the reporting of failures. After
minimization, removing an assertion will almost certainly result in verification
failure. Therefore, we randomly sampled 20 assertions to remove and recorded
the time it took to report the failure, and computed the ratio to the successful
verification time for the function left intact. The results can be seen in Figure 4.
We conclude that ambient facts did result in slowdowns in a small fraction of
functions that failed to verify, with 78% of the failed functions still verifying in
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2x of their original verification time. Thus, ambient facts did not result in an
explosion in verification failure time.

0 100 200 300 400 500 600
Verification Time Ratio (%)

Anvil
Splinter

CapybaraKV
IronKV

Median

Fig. 4: Runtime “Slowdown" Ratio for 20 runs (each with one of the randomly
sampled asserts removed) against successful verification. For each of the 20 runs,
we report the ratio between a function’s verification time when a failure was
introduced and the verification time for the same function left intact. The plot
also includes the median of these ratios, and a line indicating 2x slowdown.

6 Triggers

Quantified facts are instantiated via syntactic matching of “triggers” (Section 2.2).
When the verification tool selects the “trigger” expressions for a quantifier, it
can default to selecting every possible valid, non-redundant trigger, or it can
conservatively only select safe triggers, i.e. those that are less likely to significantly
increase the search space that the solver can explore, leading to longer verification
times.

6.1 Trigger Selection Strategy

Verus’ default automatic trigger selection is quite conservative: it selects a few
“safe” triggers. A quantifier can be annotated with #![all_triggers], which
switches the trigger selection strategy to pick all valid, non-redundant triggers
for the quantified expression8. The #![all_triggers] strategy is generally still
more conservative than Dafny’s default trigger selection strategy (which employs
some more advanced techniques where quantifiers are automatically split and
triggers shared, see Sec 2.1 of [14]).

6.2 More Automation with More Triggers

Axioms An immediate question follows: Is it possible to obtain a more extensive
automation (that is, considering our metric, a smaller number of required hints
8 Due to technical reasons related to polymorphism, there is an exception: quantifiers

where the quantified variables are used as arguments to both arithmetic operations
and function calls. For these quantifiers, the #![all_triggers] strategy remains
more conservative
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to the solver as asserts) by changing how triggers are selected for the default
set of quantified facts imported when using the Verus standard library?

The answer is no. By manual inspection of most axioms of Seq, Set, Map,
Multiset, we have observed that their triggers are quite straightforward, and
most trigger candidates that are not selected would generally lead to “matching
loops” which result in a very large search space (these result in the solver timing
out). For example, for the following axiom of lengths of sequences (an excerpt of
the default set of the Verus’ standard library ambient facts):

1 pub broadcast axiom fn axiom_seq_add_len<A>(s1: Seq<A>, s2: Seq<A>)
2 ensures
3 #[trigger] s1.add(s2).len() == s1.len() + s2.len(),
4 ;

The two possible trigger sets are
1 • s1.add(s2).len()
2 • s1.len(), s2.len()

But the second one is almost always unhelpful, as this axiom is usually only
relevant in contexts where there is a call to add. Moreover, if the second trigger is
included, this axiom will be instantiated excessively: once on each pair of .len()
calls in the program and proof context.

User Code We saw that there are little to no opportunities to expand the
triggers of quantified facts in the standard library, but user-level code may contain
more complex quantified expressions with more trigger candidates. In this section,
we study the effects of selecting a broader set of triggers for all quantifiers.

In the following experiment, we picked IronKV and removed all manual
triggers if possible. We then used #![all_triggers] wherever it is supported,
and ran the assert minimization tool.

The change only breaks one proof. In the end, we added 206 #![all_triggers]
annotations in the 261 quantifiers in IronKV.

We measure the impact on automation using our assert-based metric, and
report results in Table 2. For this project, a more liberal trigger selection strategy
improves automation (according to our metric) more than importing ambient
facts for collection types. We measure the performance impact (on success and
failure), with a methodology similar to the one described in Section 5.4 and
Section 5.5, and report the results in Figure 5.

System Original Min All Triggers Ambient Facts
IronKV 646 268(-58.5%) 235(-33, -12.3%) 245(-23, -8.6%)

Table 2: Assertion counts for IronKV after minimization with all_triggers

Unfortunately, this experiment cannot scale well to other verification projects
considered in Sec:5.1, as they have at least twice as many triggers throughout
the project, and verifying the project using all_triggers pervasively will result
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in a large amount of verification failures. We suspect these failures are due to
increased search space and misguided heuristics. However, our data indicated
that more trigger candidates on the user level quantified expressions have a
non-trivial positive impact on proof automation. We leave further exploration of
the automation level of different trigger levels as future work.
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Fig. 5: Cumulative distribution of verification time, and verification “slowdown"
ratio for 20 sampled asserts for IronKV with all_triggers enabled. Detailed
descriptions of the two figures can be seen in Figure 3 and Figure 4.

7 Related Work

7.1 Dafny

The authors of Dafny argue that trigger-based installation should be available
at the source code instead of relying on SMT heuristics, and provide a trigger
selection algorithm [14].

Increasing automation is crucial for past large-scale verification projects in
Dafny. One way of publishing additional quantified facts pervasively on a module
level is to declare a ghost predicate in a module with an ensures clause. The
following is an example of publishing the fact that the uninterpreted function
BinOp is commutative.

f unc t i on BinOp ( x : i n t , y : i n t ) : i n t

ghost p red i ca te BinOpAuto ( x : i n t , y : i n t )
ensures BinOpAuto ( x , y ) =⇒ BinOp ( x , y ) == BinOp ( y , x )
// BinOpAuto i s e q u i v a l e n t to
// ∀ x , y . BinOpAuto ( x , y ) =⇒ BinOp ( x , y ) == BinOp ( y , x )

By importing the module containing this ghost predicate, the quantified
fact derived from the ensures is effectively available on the module level.
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The authors of the VeribetrKV crash-safe key-value store [9, 16] report that
this methodology has been crucial in their development. However, this approach
to introducing additional quantified facts in context does not allow for granular
control of where they are imported (in contrast to broadcast proof).

7.2 Instability

Instability (or brittleness) is a common phenomenon observed in SMT-based
verification tools. Namely, some proofs break under semantically equivalent
changes [5, 25, 30, 31]. Shake [29] showed that irrelevant context is one of the
culprits for instability.

To fight proof instability, a technique known as “free facts" was proposed
in Dafny, which is a set of generated facts based on syntactic matching during
the verification condition generation [4]. In a sense, free facts perform a weaker
version of pattern-based instantiation before SMT solving. The free facts authors
indicated a strong interest in studying their verification projects with a reduced
number of assertions, as the extra assertions take up verification time and resource
usage. Our empirical evaluation on Verus suggested that reducing the number of
assertions does not necessarily reduce verification time, and we leave exploration
in this direction as future work.

Axolocl is a tool to automatically localize proof context in local proof blocks [8].
Their proof localization algorithm moves relevant axioms for verifying an assertion
into a local proof context, based on information from UNSAT-CORE and quanti-
fier instantiation, in Boogie [2], an intermediate verification language for Dafny
and Viper. We believe that, with Verus proof blocks and broadcastable quantified
facts, we can achieve source-level translation to minimize proof contexts.

7.3 Other Verus Work

RagVerus [28] is the first work that considered repository-level proof automation.
Though the methodologies are very different from this project, the proof automa-
tion aspect is very similar to our evaluation of quantified facts in Section 5, and
the Verus Property Extractor uses a very similar technique to our Verus assert
minimizer.

ProofPlumber [6] introduced several automated strategies to insert assertions
in the right places to guide the proof engineer to see where the proof has gone
wrong. It’s interesting future work to incorporate the minimizer and axiom-usage-
info as automatic strategies.

8 Conclusion

We explored several directions for tunable automation in the Verus Rust verifica-
tion tool. To this end, we introduced broadcastable quantified facts as a mechanism
to tune automation on a finer-grained level, and demonstrated its usefulness
through case studies. We also conducted multiple experiments on openly available
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large Verus projects to evaluate the cost and benefits of increasing automation
along two axes: increasing quantified facts in context, and increasing the level of
automation from triggers.
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A Appendix

A.1 Mariposa

One interesting experiment is to use Mariposa to answer whether more ambient
facts introduce more “instability", partly answering RQ2. This is not included in
the main paper as Verus programs tend to be more “stable" than other auto-active
verifiers. Nevertheless, Table 3 contains the results of running Mariposa on the
four projects. IronKV Original, for some reason, has twice the number of queries,
though not impacting the impact of the data. Except for Anvil having a reverse
trend, most projects have a slight increase in instability when exposed to a larger
set of ambient factors, which aligns with our expectation.

Benchmark Stable Unstable Unsolvable TotalNumber % Number % Number %

IronKV Original 726 100.00% 0 0.00% 0 0.00% 726
IronKV Minimized 363 100.00% 0 0.00% 0 0.00% 363
IronKV Broadcasted 362 99.72% 1 0.28% 0 0.00% 363
Splinter Original 1460 99.18% 3 0.20% 9 0.61% 1472
Splinter Minimized 1444 98.10% 18 1.22% 10 0.68% 1472
Splinter Broadcasted 1441 97.89% 22 1.49% 9 0.61% 1472
Anvil Original 314 99.37% 2 0.63% 0 0.00% 316
Anvil Minimized 313 99.05% 3 0.95% 0 0.00% 316
Anvil Broadcasted 315 99.68% 1 0.32% 0 0.00% 316
CapybaraKV Original 723 99.86% 1 0.14% 0 0.00% 724
CapybaraKV Minimized 721 99.59% 3 0.41% 0 0.00% 724
CapybaraKV Broadcasted 719 99.31% 5 0.69% 0 0.00% 724

Table 3: Mariposa Results on All Projects, “Broadcasted" means minimized with
ambient facts, described in Table 1

A.2 Implementation

The underlying implementation uses fuels to indicate whether the broadcasted
proof wants to be included in the context. If a proof function is marked as
broadcast, then it will create a broadcast version that moves the parameters
to be universally quantified. If broadcast use appears, Verus will activate the
fuel such that the broadcasted proof function can be used, thus bringing the
broadcasted proof function in scope.

Timeline: Verus@bc1fe provided an initial implementation; however, only
proof functions without a proof body (mostly axioms) can be treated as ambient
facts, as at the time we can’t check if there are no cycles in the lemmas. The
following PR Verus#850 implements SCC order for SMT commands to make
SMT prove the broadcasted proof functions before they get imported globally.
Finally, Verus#1022 implements the generalized broadcastable quantified facts.

https://github.com/verus-lang/verus/commit/bc1fe84bcf0dd596c0f806d90a4ad08a1c41f842
https://github.com/verus-lang/verus/pull/850/
https://github.com/verus-lang/verus/pull/1022
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